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Abstract

Research into the dynamics of Genetic Algorithms (GAs) has led to the field of
Estimation–of–Distribution Algorithms (EDAs). For discrete search spaces, EDAs
have been developed that have obtained very promising results on a wide variety of
problems. In this paper we investigate the conditions under which the adaptation of
this technique to continuous search spaces fails to perform optimization efficiently.
We show that without careful interpretation and adaptation of lessons learned from
discrete EDAs, continuous EDAs will fail to perform efficient optimization on even
some of the simplest problems. We reconsider the most important lessons to be
learned in the design of EDAs and subsequently show how we can use this knowledge
to extend continuous EDAs that were obtained by straightforward adaptation from
the discrete domain so as to obtain an improvement in performance. Experimental
results are presented to illustrate this improvement and to additionally confirm
experimentally that a proper adaptation of discrete EDAs to the continuous case
indeed requires careful consideration.

Key words: Estimation–of–distribution algorithms; Numerical optimization;
Normal distribution; Convergence dynamics; Adaptive variance

∗ Corresponding author. Tel.: +31-20-592-4323; fax: +31-20-592-4199.
Email addresses: Peter.Bosman@cwi.nl (Peter A.N. Bosman),

joern.grahl@bwl.uni-mannheim.de (Jörn Grahl).

Preprint submitted to Elsevier Science 11 October 2006



1 Introduction

Estimation–of–Distribution Algorithms (EDAs) constitute a relatively novel,
yet already established, branch of Evolutionary Computation (EC). EDAs
were initially introduced into the field of EC to overcome some of the short-
comings of earlier discrete Evolutionary Algorithms (EAs), specifically the
simple Genetic Algorithm (GA). The main operator of variation in EDAs is
the estimation of a probability distribution based on the selected solutions
and the subsequent drawing of new solutions from this distribution. The dis-
tribution constitutes the explicit and adaptive inductive search bias of the
EDA.

Along the line of binary and discrete EDAs, much progress has been made in
recent years (Etxeberria and Larrañaga, 1999; Harik, 1999; Pelikan, Goldberg
and Cantú-Paz, 1999; Mühlenbein and Mahnig, 1999; Harik and Goldberg,
2000; Pelikan and Goldberg, 2001; Pelikan and Goldberg, 2003). Some prob-
lems that were notoriously hard for GAs have been solved efficiently using
EDAs. The variety of problems successfully tackled also contains some real–
world problems (Blanco, Larrañaga, Inza and Sierra, 2001; Sierra, Lazkano,
Inza, Merino, Larrañaga and Quiroga, 2001; Bengoetxea, Larrañaga, Bloch,
Perchant and Boeres, 2002; Ducheyne, De Wulf and De Baets, 2002; Blanco,
Inza and Larrañaga, 2003). The results have motivated researchers to extend
the EDA principle to the continuous domain (Sebag and Ducoulombier, 1998;
Gallagher, Fream and Downs, 1999; Bosman and Thierens, 2000; Larrañaga,
Etxeberria, Lozano and Peña, 2000; Bosman and Thierens, 2001a; Cho and
Zhang, 2001; Shin, Cho, and Zhang, 2001; Ocenasek and Schwarz, 2002; Ahn,
Ramakrishna and Goldberg, 2004). However, the results so far are not as
encouraging as those obtained in the binary domain in terms of search effi-
ciency. In fact, current continuous EDAs fail on some standard test problems
of numerical and parameter optimization where other continuous EAs or even
classical gradient–based algorithms do not fail (Bosman and Thierens, 2001b).

Recently, studies have been carried out that indicate that the problems men-
tioned above may yet be coped with. Yuan and Gallagher (2005) showed in
an initial investigation that by artificially keeping the variance at a value of at
least 1, certain problems could be solved by a continuous EDA that it other-
wise was not able to solve. Ocenasek, Kern, Hansen and Koumoutsakos (2004)
used a self-adaptation approach adopted from evolution strategies to scale the
variance after the distribution estimation. The underlying continuous proba-
bility distribution is quite involved however. Our approach in this paper is a
more principled contribution to solving the problem of premature convergence
and to explain what goes wrong in the adaptation of EDAs from the discrete
domain to the continuous domain. In this article, it is assessed which require-
ments a probability distribution has to meet in order to function properly as
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a search distribution in EDAs. We argue that there is a fundamental and sys-
tematic difference between the discrete and the continuous domain. Generally
speaking, in order to build efficient optimizers using the EDA principle, the
induced bias in the form of the estimated probability distribution has to fit to
the structure of the problem at hand. The central topic of this paper is to as-
sess the discrepancies between the concept of problem structure in the discrete
and continuous domain and to assess to which extent the probabilistic search
bias can fit the problem structure in the continuous domain. We indicate that
indeed compared to the discrete case there are additional issues that need to
be addressed in the design of the continuous EDA to decrease the probabil-
ity of failure. We also present a simple remedy to meet with the additional
issues we identify and show on the basis of experimental results that conse-
quently the optimization performance of the continuous EDA indeed improves
substantially.

The remainder of this paper is organized as follows. In Section 2 we outline
the concept of EDAs and provide insight into the main lessons learned from
discrete GAs and EDAs. In Section 3 we then show how continuous EDAs
can be constructed by conforming to the main concept of EDAs and estimat-
ing a probability distribution from the selected solutions. In our case, we use
maximum–likelihood estimates of the normal distribution. We also point out
how the main lessons learned from the discrete domain can be transferred to
the continuous domain. We show that a more careful interpretation is required
of these lessons for the proper design of continuous EDAs. We illustrate ana-
lytically and by experiments how and why continuous EDAs can indeed fail.
Afterwards, in Section 4, we propose a straightforward remedy with virtu-
ally no additional computational overhead. It is shown in Section 5 that by
virtue of our remedy the continuous EDA no longer fails on certain benchmark
problems. We conclude this article in Section 6.

2 Estimation–of–Distribution Algorithms (EDAs)

Estimation–of–Distribution Algorithms (EDAs), introduced by Mühlenbein
and Paaß (1996), are stochastic search strategies that maintain a set of can-
didate solutions, called the population, throughout the search. A solution is
also called an individual. Each individual has an associated fitness value that
measures its quality. The goal of the EDA is to find the individual of highest
quality. An individual consists of a phenotype and a genotype. The phenotype
is the physical appearance (i.e. the actual solution to the problem at hand)
whereas the genotype is the genetic encoding of the individual. The genotype-
phenotype mapping is called the representation of the problem (Rothlauf,
2002). The fitness of an individual is computed using the phenotype, whereas
new solutions are built on the basis of the genotype.
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In an EDA, the first population of candidate solutions is usually generated at
random. The fitness of the individuals is evaluated and the better individuals
are selected for variation. Selection favors solutions of higher quality. Its func-
tion is to push the population into promising regions of the search space. New
candidate solutions are then generated by estimating a probability distribu-
tion from the selected solutions and by randomly drawing new samples from
this distribution. This specific approach to performing variation differentiates
EDAs from other optimization techniques. The newly generated individuals
replace parts of the old population or the entire old population as a whole.
The new population is evaluated and the better individuals are kept. This
process is then iterated until a predefined convergence criterion is met:

(1) Select a collection of solutions S from P

(2) Estimate a probability distribution from S

(3) Draw a collection of new solutions O from the estimated distribution
(4) Replace some of the solutions in P by solutions from O

Specifically step 3 is different from GAs. In GAs, new solutions are typically
created by crossing over parts of the genotype between a small number of par-
ent solutions (typically 2). Different EDAs use different probability distribu-
tions and many EDAs have been proposed in recent years. For an overview we
refer the interested reader to the literature (Larrañaga and Lozano, 2001; Pe-
likan, Goldberg and Lobo, 2002; Bosman and Thierens, 2004).

3 Adapting discrete EDAs to continuous EDAs

3.1 Matching inductive search bias and problem structure

In general, for an optimization algorithm to be competent in solving a certain
optimization problem, the search bias of the optimization algorithm has to
fit the structure of the problem. The search bias of EDAs, exemplified by the
probability distribution used, is inductive as it is learned during optimization.
Now, if it is possible to approximate the probability distribution over the
solution space that assigns a uniform probability distribution over all solutions
with a quality at least as good as that of the worst selected individual, a highly
efficient EDA can be constructed (Rastegar and Meybodi, 2005). This EDA
finetunes the probability distribution each generation to represent ever more
precisely and selectively the best solutions in the search space. For EDAs,
therefore, the following two prerequisites are of specific importance:

(1) Adequacy of the class of probability distribution
The probability distribution must be able to assign solutions that have
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a certain minimal quality, i.e. solutions that have specific properties, a
high probability density. In other words, the capacity of the probability
distribution must be adequate.

(2) Competence of the estimation procedure
Even if the capacity of the class of probability distribution used is ade-
quate, proper exploitation of the structure of the optimization problem
is only guaranteed if the estimation procedure is actually capable of con-
figuring the parameters of the probability distribution in such a way that
the high probability densities are actually assigned to solutions of a cer-
tain minimal quality. In other words, the estimation procedure must be
competent.

Finally, it should be noted that for efficiency, an additional prerequisite is that
the estimation procedure is efficient (i.e. of low–order asymptotic algorithmic
complexity) in addition to being competent.

3.2 Discrete EDAs

3.2.1 Inductive search bias

Probability distributions for discrete spaces assign probabilities to specific
settings of variables. Hence, any probability distribution can be expressed, en-
suring an adequate capacity. By factorizing the probability distribution (Lau-
ritzen, 1996; Friedman and Goldszmidt, 1996), not all combinations of settings
for all variables need to explicitly be enumerated, but probabilities can be as-
signed to specific combinations for subsets of variables. Since factorizations
are only a more efficient way of representing the probability distribution, the
capacity is not affected. Using frequency counts to estimate the probabilities
from data results in maximum–likelihood estimations that reveal statistical
dependencies.

3.2.2 Problem structure

In the discrete domain, problem structure refers to a decomposition of the opti-
mization problem into subproblems of smaller sizes (Goldberg, 2002). In other
words, there are configurations of bits at specific locations, so–called Building
Blocks (BB), that contribute significantly to the solution quality when present
in a solution. These building blocks are commonly said to form partial solu-
tions to the problem. Moreover, the knowledge of which bit–configurations
at what locations cause a significant contribution to the solution quality is
commonly referred to as linkage information (Harik and Goldberg, 1996).

5



3.2.3 Matching

The necessity of the joint appearance of configurations of bits causes statistical
dependence of random variables when estimating the probability distribution
of the configurations of the bits from a set of solutions that were selected
on the basis of their quality. Using factorized probability distributions, these
statistical dependencies can be modeled. In other words, a discrete EDA can
store which configurations of bits should have a large probability of appearing
jointly in a good solution because the capacity prerequisite from Section 3.1
is met.

It has to be noted however, that in accordance with the degree of the inter-
actions between the bits, simple or more involved factorizations need to be
used. If there are no interactions between the bits, meaning that the build-
ing block size is one, univariately factorized probability distributions in which
each variable is modeled to be statistically independent of each other variable,
have proven to be efficient when used in an EDA (Pelikan and Mühlenbein,
1998). In general however the size of the building blocks is larger. As the
interactions between the bits get more complex, the possibilities for express-
ing statistical dependency relations in the probability distributions should in-
crease accordingly (Thierens, 1999; Bosman and Thierens, 1999). To this end,
Bayesian factorizations have been found to be a suitable choice (Pelikan et
al., 1999; Mühlenbein and Mahnig, 1999; Pelikan and Goldberg, 2003) as they
meet the capacity prerequisite and in addition, a greedy estimation procedure
is often found to meet the competence prerequisite from Section 3.1.

Summarizing, in the discrete space the inductive bias of factorized probabil-
ity distributions based on frequency counts can match the decomposability
of the problem structure. In addition, assuming that the decomposability is
of bounded complexity, the greedy estimation procedure that is commonly
employed in discrete EDAs is both competent and efficient. Consequently,
discrete EDAs allow for efficient optimization.

3.3 Continuous EDAs

3.3.1 Inductive search bias

In the continuous domain, it is the contour–lines of the probability distribu-
tions that indicate which parts of the search space have a higher probability
of being sampled.

6



3.3.2 Problem structure

Analogous to the inductive search bias, the problem structure in the continu-
ous domain is exemplified by the contour–lines of the function to be optimized.

3.3.3 Matching

To match inductive search bias and problem structure, we thus need to match
the contour lines. However, because the contour–lines of the optimization
problem can be of virtually any shape, we require the property of univer-
sal approximation. However, such universal approximation is computationally
intractable to compute. In practice, a continuous EDA will therefore have to
rely on tractable probability distributions, such as ones that are based on the
normal pdf.

Because in general we cannot assume that the contours of the fitness func-
tion can be modeled properly, a problem arises. The concept of statistical
dependence no longer corresponds with dependence as imposed by the fitness
landscape. For instance when using the normal pdf, after estimating the pa-
rameters it might be found that there is no statistical dependence between two
variables. However, when observing the actual source for the data, which fol-
lows the density contours of the fitness function, the variables may be strongly
dependent through non–linear interactions that simply cannot be modeled by
the normal pdf. Hence, we can now conclude the following implications for the
design of continuous EDAs regarding adequacy:

(1) Adequacy of the class of probability distribution (continuous domain)
(a) Adequate class of probability distribution

Linkage information in the continuous case only maps perfectly onto
statistical dependency information as observed in the factorization
of the probability distribution if the class of probability distribution
that is used to perform density estimation with has the capacity to
allow for a close modeling of the contours of the fitness landscape.

(b) Inadequate class of probability distribution

If there is a mismatch between the capacity of the class of probability
distribution used for estimation and the contours of the fitness land-
scape, the modeling of statistical dependencies through factorizing
the probability distribution in estimating the distribution from data
is a less important and less reliable source of information for inducing
the search bias in an attempt to exploit the structure of the problem.

From these revised prerequisites it follows that in the EDA based on the nor-
mal pdf it appears not to be a promising way to approach probabilistic mod-
eling in the continuous domain with the same goal as in the discrete domain:
to focus solely on getting the statistical dependencies right in the estimated
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model and thereby assume a proper problem decomposition. Indeed, in ini-
tial EDAs that estimate a Bayesian factorization of the normal distribution
using maximum–likelihood estimations, problems of inefficiency were already
revealed after performing experiments on a variety of problems with differing
problem structures (Bosman, 2003). It was observed that these EDAs are not
capable of exploiting gradient information since density estimation makes no
assumption on the source of the data from which to make the estimations.
As a result, these EDAs were found to be extremely inefficient on problems
with strong non–linear interactions between the variables, even in the presence
of smooth gradients and unimodality. Similar results were found by other re-
searchers, even using different probability distributions than the normal distri-
bution, but still attempting to obtain a maximum–likelihood estimate, which
is highly unlikely to capture the complete structure of the interesting part of
the search space (Larrañaga et al., 2000; Cho and Zhang, 2001; Shin et al.,
2001; Shin and Zhang, 2001; Cho and Zhang, 2002; Ocenasek and Schwarz,
2002; Paul and Iba, 2003a; Paul and Iba, 2003b; Ahn et al., 2004; Kern, Müller,
Hansen, Büche, Ocenasek and Koumoutsakos, 2004; Cho and Zhang, 2004).
As a consequence of the approach taken, premature convergence can occur
even on very simple functions (Grahl, Minner and Rothlauf, 2005; Hansen,
2006). In the following section we move to mathematically quantify the ap-
parent problems that we have now argued to come from a mismatch between
the capacity of the class of probability distribution used and the contours of
the fitness landscape.

3.4 A case study in continuous EDAs: the normal pdf

To gain further insight into the possible consequences of a mismatch between
inductive search bias and problem structure in continuous EDAs, we propose
to view the structure in a continuous search space as an arrangement of slopes
and peaks. This aggregated view on the composition of a fitness landscape is
also common in Evolution Strategies (ES, see for instance (Schwefel, 1995)).
The probability distribution in an EDA has to fit to these fundamental ele-
ments. Since the normal pdf can only be properly matched to the contours of
a single peak, it is important to note that slopes and peaks are related to each
other. At the beginning of the search, the EDA will in general be approaching
a local or global optimum on a slope or at least on a region of the search space
that guides into the direction of a local or global optimum and thus has a
slope–like shape. Whenever the search focuses around an optimum in its final
phases, the current region will eventually be shaped like a peak. The use of
the normal pdf will then fit the remaining local contours of the problem much
better and efficient optimization should be possible according to the lessons
mentioned above. An important question that remains is what happens when
during the search the solutions are not (yet) concentrated around a peak.
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3.4.1 The normal pdf and normal EDAs

Real–valued, continuous EDAs using Bayesian factorizations of the normal
pdf were first researched by Bosman and Thierens (2000) and Larrañaga et
al. (2000). Although these EDAs were among the very first to be studied for
the continuous case, there are earlier works in the literature on continuous
EDAs (Rudlof and Köppen, 1996; Servet, Trave-Massuyes and Stern, 1997;
Sebag and Ducoulombier, 1998; Gallagher et al., 1999). The EDAs in these
works use the normal pdf or a composition thereof, but allow no interactions to
be taken into account between the problem variables, i.e. univariate probability
densities are estimated. The common use of the normal pdf in EDAs is due
to the computational tractability of the approach to estimating probability
distributions in continuous spaces.

The normal pdf PN
(µi,Σ

i) for random variables Xi is parameterized by a vector

µi of means and a symmetric covariance matrix Σi and is defined by

PN
(µi,Σ

i)(Xi)(x) =
(2π)−

|i|
2

(det Σi)
1
2

e−
1
2
(x−µi)

T (Σi)
−1

(x−µi) (1)

The number of parameters to be estimated from data to fit the normal distri-
bution to selected individuals equals 1

2
|i|2 + 3

2
|i|. Different from the discrete

case, the number of parameters to be estimated therefore does not grow ex-
ponentially with |i| but quadratically. As a result, estimating factorizations
based on the normal pdf is relatively fast and efficient. For a given factoriza-
tion, the parameters of the normal pdf have to estimated from the selected
individuals. A maximum–likelihood estimation for the normal pdf is obtained
from a vector S of samples if the parameters are estimated by the sample
average and the sample covariance matrix (Anderson, 1958; Tatsuoka, 1971):

µ̂i =
1

|S|

|S|−1
∑

j=0

(Sj)i, Σ̂
i
=

1

|S|

|S|−1
∑

j=0

((Sj)i − µ̂i)((Sj)i − µ̂i)
T (2)

Note that to estimate Bayesian factorizations using the normal pdf, a way
to estimate the parameters for the univariate conditional normal pdf is re-
quired. Fortunately, these parameters can be efficiently computed using the
maximum–likelihood estimations in Equation 2. For more details see (Bosman
and Thierens, 2000) or (Bosman, 2003).

Although more involved probability distributions can be defined and used
in EDAs using for instance mixtures of normal pdfs (Bosman and Thierens,
2001a; Ahn et al., 2004), we specifically focus on the use of the single normal
distribution in this article as it is more intuitive to analyze. Moreover, the use
of the less–involved normal pdf will not prevent us from obtaining a better
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understanding of the exploitation of problem structure using continuous EDAs
and to reflect in a general manner on the lessons learned from the discrete
domain. In the remainder of this section we turn our attention to exactly
these specific topics.

3.4.2 The inductive search bias on a slope

In this section, we analyze analytically how a slope is traversed by a simple
one–dimensional EDA that employs maximum–likelihood normal density es-
timation and sampling. Without loss of generality, we assume that the fitness
should be maximized.

Our analysis is based on a regular EDA run as defined in Section 2. The
population size is assumed to be n. The fitness function f is monotonous,
modeling a slope. In the selection step, the best bτnc solutions are selected, τ ∈
[ 1
n
, 1]. A univariate normal density is estimated with maximum likelihood from

the selected individuals. From this density, n new individuals are generated.
The new individuals replace the old population completely. We are interested
in how the population statistics µt (mean) and (σt)2 (variance) change as
generations pass.

3.4.2.1 Monotonous fitness functions Let S be a set of solutions. Let
xj and xk ∈ S be two distinct solutions and let g : R → R be a fitness
function. Then:

g is increasing if xj ≤ xk implies that g(xj) ≤ g(xk) ∀xj, xk ∈ S

g is decreasing if xj ≤ xk implies that g(xj) ≥ gi(xk) ∀xj, xk ∈ S
(3)

The fitness landscape is said to be monotonous if the fitness function f is
either increasing or decreasing.

Assume now that a population P of search points is given. We use m dif-
ferent increasing functions f0, f1 . . . fm−1 to evaluate the solutions in popula-
tion P . After each evaluation process, we use truncation selection to select
the best bτnc individuals. We denote the m sets of selected individuals by
S0,S1, . . . ,Sm−1. It is a simple, yet interesting fact that all sets S i have to
be identical. The EDA under study uses density estimation and sampling to
generate new candidate solutions. In the density estimation process, the fit-
ness of the individuals is not considered. Density estimation solely relies on
the location of the points, i.e. the value of x. As the parameters µt and (σt)2

are estimated from x, they are identical for all fi.
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This fact simplifies our further analysis. We can now state that the effects of
iterated density estimation and sampling from the normal pdf will be the same
for all increasing fitness functions (and for all decreasing functions). Thus, we
can base our analysis on the simplest monotonous function, which is the linear
one, because we know that our results are valid for all monotonous functions.

3.4.2.2 Truncation selection and monotonous fitness functions We
analyze the truncation selection step in the presence of a monotonous fitness
function. As stated above, the EDA generates new candidate solutions by
sampling x from a normal distribution with mean µt and variance (σt)2. As-
sume now that the fitness y is obtained from a linear function y = a · x + b.
In this case, we can even further simplify our analysis. This is due to using
truncation selection. Truncation selection selects the best bτnc individuals,
regarding only the fitness ranks of the individuals. The fitness ranks are how-
ever independent of a and b. We can therefore choose y = x as the simplest
linear function.

Now, we are interested in the individual xmin, that is, the individual with mini-
mal fitness out of all selected individuals. All individuals x > xmin are selected.
We call xmin the population truncation point. The population truncation point
xmin can be obtained as follows:

xmin = Φ−1
µt,σt(1 − τ), (4)

where Φ−1
µt,σt is the inverse cumulative distribution function of a normal distri-

bution with mean µt and standard deviation σt. Thus, for monotonous fitness
functions and truncation selection, the selected individuals can be directly
obtained from the population statistics.

3.4.2.3 Change of µt to µt+1 We model selection by truncation of the
normally distributed population density. Assume that a population is dis-
tributed with mean µt

i and standard deviation σt. The fitnesses of the individ-
uals are calculated and the best bτnc solutions are selected. This corresponds
to a truncation of the normal distribution from the left at xmin. Let φ(x) be
the standard normal density at value x. From econometric literature on the
truncated normal distribution (see (Greene, 2003), appendix) we have that
the mean of a left–truncated normal distribution truncated in xmin is:

E(X|X > xmin) = µ + σ ·
φ(xmin−µ

σ
)

Φ(xmin−µ

σ
)

(5)
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Now, inserting the result from Equation 4 and rearranging leads to:

µt+1 = E(X|X > xmin) = µt + σt ·
φ (Φ−1(τ))

τ
= µt + σt · d(τ) (6)

where d(τ) =
φ (Φ−1(τ))

τ

The mean of the population after applying truncation selection can now be
easily computed. The factor d(τ) is illustrated in Figure 1. It can be seen
that for τ → 1 the factor d(τ) converges to 0. In this case the mean of the
population remains unchanged, i.e. µt = µt+1.

3.4.2.4 Change of σt to σt+1 Again, we model truncation selection by
truncation of the normally distributed population density. The variance of a
normal distribution that is left-truncated in xmin is given by:

V ar(X|X > xmin) = E(X2|X > xmin) − E(X|X > xmin)
2 (7)

= σ2 ·






1 +

xmin−µ

σ
· φ

(
xmin−µ

σ

)

1 − Φ
(

xmin−µ

σ

) −




φ
(

xmin−µ

σ

)

1 − Φ
(

xmin−µ

σ

)





2






We use this equation in the context of our model by assigning appropriate
indices, inserting xmin, simplifying, and rearranging. This leads us to:

(σt+1)2 = (σt)2 · c(τ) (8)

where c(τ) =






1 +

Φ−1(1 − τ)φ (Φ−1(τ))

τ
−

[

φ (Φ−1(τ))

τ

]2






Now, we can compute the population variance in generation t + 1, given the
population variance in generation t. The factor c(τ) is plotted in Figure 1. It
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can be seen that if τ → 1, the factor c(τ) converges to 1. In this case the
variance of the population remains unchanged, i.e. (σt)2 = (σt+1)2.

3.4.2.5 Population statistics in generation t Ultimately, we are inter-
ested in how the population mean and variance depend on t. To obtain the
corresponding population statistics, Equations 6 and 8 from Sections 3.4.2.3
and 3.4.2.4 must be repeatedly used. By doing so one obtains the following
result for the mean in generation t:

µt = µ0 + σ0 · c(τ) ·
t∑

i=1

√

d(τ)i−1 (9)

Similarly, one obtains the following result for the variance in generation t:

(σt)2 = (σ0)2 · c(τ)t (10)

3.4.2.6 Convergence of population statistics for t → ∞ In this sec-
tion, we analyze the convergence of the EDA. To do so, we analyze how the
population statistics develop over time as t → ∞. First, we consider the mean.
Therefore, we make use of (9). Note that the sum is the only part of the ex-
pression that depends on t. This leads us to:

lim
t→∞

µt = µ0 + σ0 · c(τ) · lim
t→∞

t∑

k=1

[√

d(τ)(k−1)

]

︸ ︷︷ ︸

infinite geometric series

(11)

= µ0 + σ0 · c(τ) ·
1

1 −
√

d(τ)

This expression allows us to compute the maximum distance that the popu-
lation mean can move across the search space for a given selection percentile
τ and under the assumption of a monotonous fitness function. Also, this ex-
pression indicates that this maximum distance is bounded.

Now, we consider the variance. We make use of (10) and let t tend to infinity.
Note that 0 < c(τ) < 1. This leads to

lim
t→∞

(σt)2 = lim
t→∞

[

(σ0)2 · c(τ)t
]

= 0 (12)

Thus, the variance converges to 0.
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3.4.2.7 Interpretation of results From the previous paragraph we now
know that the continuous EDA based on maximum–likelihood estimations of
the normal distribution converges even while on a slope since the population
variance converges to 0. The reason for this is that the maximum distance
that the mean of the population can move across the search space is bounded.
The final position of the mean solely depends on

• the mean of the first population,
• the variance of the first population,
• and the selection percentile τ .

It is thus well possible that the EDA is unable to find the global optimum.
If at some point during optimization solutions are only available on a slope,
but the optimum is (well) outside of the range of the current set of solutions,
the algorithm will converge prematurely on its way toward the optimum. Note
that this failure will not vanish when switching to higher dimensional search
spaces. Also note that the loss of solutions surrounding the optimum can eas-
ily occur during a run of the EDA as the normal pdf that is used is likely
not to match the problem structure. Hence, efficient maintenance of solutions
surrounding an optimum is not guaranteed, following the prerequisites from
Section 3.1, specifically prerequisite 1. Since the maximum–likelihood estima-
tion procedure lacks the possibility of generalization to fit the search space
outside of the area defined by the selected solutions, prerequisite 2 is not met
with either. From the previous section we now know that the price to pay is
likely to be that of premature convergence.

An experimental illustration of optimization failure is presented in Figure 2.
The Figure shows the result of using a one–dimensional maximum–likelihood
normal EDA to minimize the sphere function. The progression of density esti-
mations is shown in subsequent generations. The solutions are initially in the
range [−10;−5]. Indeed, even though the function to optimize has a smooth
gradient and is unimodal, the EDA is not able to find the optimum because the
variance goes to zero too rapidly. The problem caused by lack of generalization
is immediately apparent from this Figure.

The resulting situation is comparable to the loss of building blocks during
a GA run in the discrete domain. Discrete GA theory tells us that in that
case the population size should be increased. However, because of the limiting
shape of the density function to be estimated we know that increasing the
population size will not help to obtain a better approximation of the true den-
sity. Hence, the population size will have to increase dramatically to improve
the initial quality of solutions. Under the use of elitism, these solutions will
then be maintained throughout the run, increasing the eventual possibility of
ending up with a distribution of solutions surrounding a peak. However, such
increase will be exponential in the number of variables due to the curse of di-
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Fig. 2. Population and estimated probability distribution (rescaled to fitness range
for visualization) in the maximum–likelihood normal EDA in generations 0, 1, 2, 3,
4 and 5 (top–left to bottom–right).

mensionality. Moreover, if the optimum is simply not contained in the initial
range in which samples are available, increasing the population size will not
improve the probability of finding the optimum at all.

Concluding, using maximum–likelihood estimations of normal pdfs, the search
bias cannot be fit to match the structural properties of slope–like regions in
the fitness landscape due to lack of generalization.

3.4.3 The inductive search bias on a peak

Assuming that solutions are distributed nicely surrounding a peak in the land-
scape, it is evident that the search bias induced by an EDA based on the nor-
mal pdf will fit the problem structure well. The reason is that the unimodality
of the normal pdf will place the center of mass of the estimated distribution
near the true center of the landscape, increasing the probability of generating
solutions near the optimum.

4 Enhancing maximum–likelihood normal EDAs using adaptive
variance scaling and correlation triggering

In the previous section we have analyzed how the induced bias of the normal
pdf fits to two elementary structures of a continuous search space: slopes and
peaks. We found, that the induced search bias cannot be made to fit the
structure of a slope well enough to guarantee successful search, whereas it
imposes no problem on peaks. As pointed out, both structures will, however,
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in general appear during an EDA run. Since we are not interested in making
the class of probability distribution more involved in this article, the most
important question that now arises is how the estimation procedure in the
normal EDA should be changed to prevent the identified problems as best
possible.

In this section we first introduce a simple technique that modifies the estima-
tion procedure of the normal pdf in a way that makes it more effective when
traversing a slope. Subsequently we propose a triggering method that allows
to decide during optimization whether the use of this efficiency enhancement
is currently appropriate or not.

4.1 Adaptive variance scaling

The smaller the variance in the estimated probability distribution, the smaller
the area of exploration for the EDA. The variance in the normal pdf is explic-
itly stored in the covariance matrix Σ. Hence, a straightforward manner to
allow the EDA to increase the area of exploration is to enlarge the variance
beyond its maximum–likelihood estimate.

The rationale that we propose for the actual scaling of the variance of the es-
timated normal pdf is the following. An adaptive–variance–scaling coefficient
cAVS is maintained. Upon drawing new solutions from the probability distri-
bution, the variance is scaled by cAVS, i.e. the covariance matrix used for the
normal pdf is cAVSΣ instead of just Σ. If the best fitness value improves in
one generation, the current size of the variance allows for progress. Hence, a
further enlargement of the variance may allow for further improvement in the
next generation. Note that this rationale is in accordance with lesson 1b from
Section 3.3: since the estimation procedure of the normal pdf can in general
not be expected to be the most reliable source of fitting the problem struc-
ture, we incorporate additional sources of information. The rationale is also
in accordance with lesson 2 from Section 3: if the search has reached a point
where all solutions are on the same slope, the maximum–likelihood estimation
procedure will not generalize to parts outside of the datarange where the fit-
ness values may also be interesting. Enlarging the variance helps in tackling
this problem. In this case we observe the actual result in improvement of us-
ing a certain estimation. To compensate for the variance–diminishing effect
of selection, the size of cAVS is scaled by ηInc > 1. If on the other hand the
best fitness does not improve, the range of exploration may be too large to
be effective and the adaptive–variance–scaling coefficient should be (slowly)
decreased by a factor ηDec ∈ (0; 1). To allow for the effect of adaptive variance
scaling to extend over multiple generations, we propose to not let cAVS decrease
too rapidly, e.g. set ηDec = 0.9. For symmetry, we set ηInc = 1/ηDec.
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We bound the magnitude of cAVS from above by a predefined value cAVS–MAX to
ensure that improvements in the best fitness in many subsequent generations
do not lead to excessive variance values. We also bound the magnitude of
cAVS from below by a predefined value cAVS–MIN. Whereas from the results in
Section 3 it can be argued that the only problem with the EDA approach
based on the maximum–likelihood normal distribution is that the variance can
become too small, allowing the variance to be scaled to even smaller values can
speed up convergence when the EDA seems not able to find better solutions
for a sustained number of subsequent generations (often due to multiple local
minima). For symmetry we set cAVS–MIN = 1/cAVS–MAX. Moreover, whenever it
happens that cAVS < cAVS–MIN, decreasing the size of the variance doesn’t appear
to help and cAVS is reset to cAVS–MAX to stimulate exploration. An experimental
illustration of the normal EDA extended with the adaptive–variance–scaling
technique is presented in Figure 3. Indeed the EDA is now capable of finding
the optimum even though it is outside of the initial sampling range.
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Fig. 3. Population and estimated probability distribution (rescaled to fitness range
for visualization) in the adaptive–variance–scaling maximum–likelihood normal
EDA in generations 0, 1, 2, 4, 8 and 16 (top–left to bottom–right).

4.2 Correlation–triggered adaptive–variance-scaling

In the scheme defined in Section 4.1 the adaptive–variance–scaling coefficient
cAVS increases if a better fitness value is found, i.e. if the EDA is successful
in a certain generation. A success does however not always mean that the
variance needs to be enlarged. This is especially the case when the center of
the normal pdf is close to the optimum. Once this is the case, the induced
bias of the normal pdf suffices to guide the search to the optimum. Making
the variance larger in such a case will only slow the EDA down as it leads
the bias of the algorithm to also explore a larger area around the optimum.
Because this essentially makes the EDA less efficient, adaptive variance scaling
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is to be prevented in such a case. Note that this approach to distinguishing
between the two situations during the EDA run is actually a test that indicates
whether the currently induced search bias suits the structure of the current
search area. If it does, the maximum–likelihood probabilistic modeling of the
normal pdf can be used (following the combination of prerequisites 1a and 2).
Otherwise, additional means of inducing the search bias may be extremely
helpful (following the combination of prerequisites 1b and 2).

To obtain a test of the reliability of using structure identification in continuous
EDAs by means of maximum–likelihood estimations, the relationship between
normal density and fitness of the selected solutions can be exploited. If the
selected solutions are centered around a (local) optimum, the density will be
strongly correlated with fitness (positively in case of maximization and nega-
tively in case of minimization). The reason is that for the normal distribution
the density of a point decreases when it is moved away from the mean. In-
tuitively, such correlation is desirable since better fitness values get a higher
probability of being (re)produced by the EDA. If on the other hand the se-
lected solutions are found to be on a slope, on the one side of the mean the
fitness values will be better whereas on the other side of the mean the fitness
values will be worse. Hence, a decrease in density is associated with both an
increase and a decrease in fitness, effectively decorrelating density and fitness.

We propose to base the test for triggering the use of adaptive variance scal-
ing on the ranked correlation coefficient between density and fitness. We use
ranked correlation because the most important aspect is that a larger density
should be associated with a better fitness value whereas the exact form of the
fitness landscape is less important. The results of using this correlation trigger
for a slope and for a peak are illustrated in Figure 4.
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Fig. 4. Scatterplots and corresponding regression lines for fitness of the selected
solutions versus their density under the estimated normal distribution in the first
generation when minimizing the sphere function for l = 5. (Left) initial range =
[−10,−5] (r = −0.3289859), (Right) initial range = [−3, 2] (r = −0.9725636).

We propose to have a threshold value θcorr such that if the value of the correla-
tion coefficient r between the density and the fitness of the selected solutions
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is at most the value of the threshold, i.e. θcorr ≤ r, then the conventional
maximum–likelihood estimate is used in the EDA. Otherwise, the estimate
based on adaptive variance scaling is used. Note that in the case of maxi-
mization we should test for θcorr ≥ r instead. An experimental illustration of
using adaptive variance scaling only when the correlation test was not passed
is presented in Figure 5. Indeed, adaptive variance scaling is now not always
used, preventing the variance from becoming unnecessarily large and speeding
up convergence.
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Fig. 5. Population and estimated probability distribution (rescaled to fitness
range for visualization) in the correlation–triggered adaptive–variance–scaling max-
imum–likelihood normal EDA in generations 0, 1, 2, 4, 6 and 8 (top–left to bot-
tom–right).

5 Experiments

In this section we present the results of experiments performed with the various
EDAs based on the normal pdf as described earlier. For clarity, the base normal
EDA that we use, employs the greedy building of a Bayesian factorization of
the normal pdf with maximum–likelihood estimates as initially introduced un-
der the acronym IDEA (Bosman and Thierens, 2000). The experiments serve
to indicate whether our closer analysis of the dynamics of continuous EDAs
and their subsequent redesign indeed leads to more efficient continuous EDAs
and hence supports our adjusted formulation of lessons and prerequisites for
the design of EDAs. For comparison with other existing optimization tech-
niques, we used the state-of-the art in evolution-strategies research, i.e. the
CMA-ES (Hansen, Muller and Koumoutsakos, 2003; Kern et al., 2004). We
further used six well–known numerical optimization problems. The dimension-
ality of these problems was varied to get a total of twelve problem instances
to test the algorithms on.
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5.1 Optimization problems

Our test suite consists of six problems that are defined for a general dimen-
sionality of l. These problems represent a variety of difficulties in numerical
optimization. The definitions of the problems are given in Table 1.

Name Definition Initial range Optimal value

Sphere Minimize
∑l−1

i=0 x2
i

xi ∈ [−5, 5]

(0 ≤ i < l)
0

Parabolic

Ridge
Minimize −x0 + 100

∑l−1
i=1 x2

i

xi ∈ [−5, 5]

(0 ≤ i < l)
−∞

Griewank
Minimize 1

4000

∑l−1
i=0(xi − 100)2−

∏l−1
i=0 cos

(
xi−100√

i+1

)

+ 1

xi ∈ [−600, 600]

(0 ≤ i < l)
0

Michalewicz Minimize −
∑l−1

i=0 sin(xi)sin
20
(

(i+1)x2
i

π

) xi ∈ [0, π]

(0 ≤ i < l)

−4.687658 (l = 5)

−24.63319 (l = 25)

Rosenbrock Minimize
∑l−2

i=0 100(xi+1 − x2
i )

2 + (1 − xi)
2

xi ∈ [−5.12, 5.12]

(0 ≤ i < l)
0

Summation

Cancellation

Maximize 100/(10−5 +
∑l−1

i=0 |γi|)

where γ0 = x0, γi = xi + γi−1

xi ∈ [−3, 3]

(0 ≤ i < l)
1 · 107

Table 1
Numerical optimization test problems (optimal values given with 7–digit precision).

The sphere function is probably the most standard unimodal benchmark for
numerical optimization. The parabolic ridge function is a parabola, i.e. just
like the sphere function, in all dimensions except the first one. In the first
dimension it is a simple linear function. To find the optimum for this func-
tion, the value for the first variable therefore needs to be moved extremely
far outside its initial range. Griewanks function is a function with many local
optima. Basically it is a parabola superimposed with a sine function to obtain
many local optima. Michalewicz’s function is also a function with many local
optima, albeit to a lesser degree than Griewanks function. An important differ-
ence is that Michalewicz’s function has many long channels throughout which
the minimum value is the same. Rosenbrocks function is highly non–linear. It
has a very narrow and curved valley along which the quality of the solutions
is much better than in its close neighborhood. This function is a real challenge
for any numerical optimizer as it is very hard to capture the entire structure
of the function and success is therefore only guaranteed if the gradient along
the bottom of the valley is followed. The summation cancellation function has
strong multivariate linear interactions between all problem variables.

5.2 Experiment setup

We varied the dimensionality for each problem to get an indication of the ap-
plicability of each algorithm as the number of problem variables increases. To
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Dim. Sphere Par. Rid. Griewank Michalewicz Rosenbrock Sum. can.

l = 5 1 · 10−20 −1 · 1010 1 · 10−10 -4.687658 1 · 10−10 1 · 107

l = 25 1 · 10−20 −1 · 1010 1 · 10−10 -24.63319 1 · 10−10 1 · 107

Table 2
Values–to–reach for all problems and dimensionalities.

be precise, we used l ∈ {5, 25}. We ran tests for the normal EDA, the normal
EDA with adaptive variance scaling and the normal EDA in which adaptive
variance scaling is triggered by the ranked–correlation test. The baseline nor-
mal EDA uses greedy estimation of a Bayesian factorization of the normal
pdf (Bosman and Thierens, 2001a). Furthermore, elitism is used in the sense
that all selected solutions are kept every generation. The n−bτnc non–selected
solutions are replaced by drawing new solutions from the estimated probability
distribution.

For l = 5, we enforced a maximum of 1·106 evaluations. For l = 25 we enforced
a maximum of 5 · 106 evaluations. We ran tests for various population sizes
({25, 50, 100, 200, 400, 800, 1600, 3200, 6400, 12800}) to find the best results av-
eraged over 100 independent runs. By “best result” we refer to the smallest
population size for which the value–to–reach (see Table 2) was reached in all
100 runs. If this success was not obtained for any population size, the popu-
lation size that resulted in the highest probability of success was used. If the
probability of success for found to be 0, the average best fitness value was con-
sidered. For all EDAs we used the rule of thumb by Mühlenbein and Mahnig
(1999) for FDA and set the selection threshold τ to 0.3. We used ηDEC = 0.9,
i.e. a small multiplication factor to allow for smooth adaptation of the vari-
ance multiplication factor. The magnitude of cAVS was bounded from above by
cAVS-MAX = 10.0.

5.3 Results

5.3.1 Parameter selection for the correlation trigger

In order to select a reasonable value for θcorr, we tested when the ranked cor-
relation coefficient between fitness and density actually triggers scaling of the
variance on the sphere function. We varied θcorr from -1.0 to 1.0 in steps of 0.01.
For each value of θcorr, 100 independent runs were performed on the sphere
function in dimensionalities l ∈ {2, 4, 8, 10, 20, 40, 80}. Initial populations were
drawn symmetrically around the optimal solution of 0 for all dimensions in a
range of [−7.5, 7.5]. The population size that was used for a certain dimen-
sionality l was equal to the minimally required population size for the EDA
without variance adaptation to solve the problem with dimensionality l to op-
timality. In other words, in that case variance scaling is not required because
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the sphere function is a single peak and thus, the induced bias of the normal
pdf itself suffices to locate the optimum if the population size is large enough.

Figure 6 illustrates the percentage of generations in which variance scaling was
nonetheless triggered (averaged over 100 runs). As a rule of thumb, we propose
to set θcorr = −0.55. For this value, the number of unnecessary correlation
triggers is rather constant and at most 25%. If a smaller value (i.e. closer to
-1.0) is chosen, it can be seen from Figure 6 that the number of unnecessary
correlation triggers will grow with increasing dimensionality. Although the
value of −0.55 is rather robust, i.e. values between −0.6 and −0.4 lead to good
results, the value for the correlation trigger should not become much larger. If
a larger value (i.e. closer to 1.0) is chosen, the scaling of variances was observed
from initial experimentation not to be triggered when it is required on slopes.
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Fig. 6. Percentage of generations in which variance scaling is triggered unnecessarily
on the sphere function in various dimensionalities as a function of the value used
for the correlation trigger threshold θcorr.

5.3.2 Overall results on the test–suite

In Figure 7 the average convergence behavior is shown for the normal EDA,
for the normal EDA with adaptive variance scaling, for the normal EDA with
adaptive variance scaling triggered by the ranked correlation coefficient and
for the CMA–ES. The CMA–ES represents the state-of-the art in evolution–
strategies research (Hansen, 2006). The population size that was selected ac-
cording to the guidelines described in Section 5.2. In Table 3 the selected
population sizes and associated probabilities of success, denoted Pr.(S), are
tabulated. Since the optimal value for Michalewicz’s function is negative and
we wanted to present the results on a logarithmic scale we plotted the dis-
tance to the optimal value instead. Moreover, since the optimal value for the
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parabolic ridge function is unbounded, we presented the results for this partic-
ular test problem on a linear scale. With the exception of the sphere problem
and the parabolic ridge function, all graphs also have a logscale on the hori-
zontal axis. Note that when a convergence graph indicates the value to reach
was not obtained, this doesn’t mean that this was the case in all 100 runs.

One of the things that immediately stands out from the results is the ap-
parent inability of the normal EDA to optimize the parabolic ridge function
and Rosenbrocks function, although both functions have nice smooth gradient
properties. The probability of success within the bounds used in our experi-
mentations is truly 0. Although the gradient along the direction toward the
optimum is straightforward, i.e. it is a simple linear slope for the parabolic
ridge function, the variance in the EDA without variance scaling shrinks too
fast and the slope cannot be traveled. In general, the normal EDA isn’t very
successful. However, when it is successful (i.e. on the sphere function), it tends
to be quite efficient. However, the overall drawback of using only the normal
distribution with maximum–likelihood estimations is apparent. Even using
very large population sizes, various problems cannot be solved at all.

EA Dim. Sphere Par. Rid. Griewank Michalewicz Rosenbrock Sum. can.
n Pr.(S) n Pr.(S) n Pr.(S) n Pr.(S) n Pr.(S) n Pr.(S)

Normal l = 5 100 1.0 12800 0.0 800 0.0 100 0.2 12800 0.0 400 1.0

l = 25 400 1.0 12800 0.0 400 1.0 800 0.0 12800 0.0 12800 0.03

Normal+ l = 5 25 1.0 25 1.0 800 1.0 50 0.21 50 1.0 50 1.0

AVS l = 25 50 1.0 50 1.0 100 1.0 6400 0.01 100 1.0 800 1.0

Normal+ l = 5 50 1.0 50 1.0 800 1.0 200 0.3 50 1.0 50 1.0

AVS+CT l = 25 50 1.0 50 1.0 100 1.0 12800 0.0 200 1.0 1600 1.0

CMA-ES l = 5 25 1.0 25 1.0 200 1.0 25 0.05 25 1.0 25 1.0

l = 25 25 1.0 25 1.0 50 1.0 200 0.0 25 1.0 25 1.0

Table 3
Selected population sizes and associated probabilities of success.

By adaptively scaling the variance, the results improve significantly. The prob-
ability of success on the parabolic ridge function and on Rosenbrocks function
for instance become 1.0, even for the larger dimensionality. The only problem
that cannot be solved with certainty within the bounds set is the Michalewicz
problem. However, a vast improvement over the normal EDA can still be ob-
served in the higher–dimensional case.

Although the results are a lot better for the EDA approach when the variance
is scaled adaptively, the results of the CMA–ES are overall slightly better
for the higher dimensionality (except for the parabolic ridge function and
Michalewicz’s function). The correlation–triggered adaptive–variance–scaling
normal EDA approach has a slight advantage for the lower dimensionality. In

23



Sphere Parabolic Ridge

 1e-20

 1e-15

 1e-10

 1e-05

 1

 50000 40000 30000 20000 10000 0

PSfrag replacements

A
ve

ra
ge

fi
tn

es
s

Number of evaluations

Sphere
Rosenbrock

Griewank
Normal, l = 5

Normal+AVS, l = 5
Normal+AVS+CT, l = 5

CMA–ES, l = 5
Normal, l = 25

Normal+AVS, l = 25
Normal+AVS+CT, l = 25

CMA–ES, l = 25

-1e+10

-8e+09

-6e+09

-4e+09

-2e+09

 0

 2e+09

 0  5000  10000  15000  20000

PSfrag replacements

A
ve

ra
ge

fi
tn

es
s

Number of evaluations

Sphere
Rosenbrock

Griewank
Normal, l = 5

Normal+AVS, l = 5
Normal+AVS+CT, l = 5

CMA–ES, l = 5
Normal, l = 25

Normal+AVS, l = 25
Normal+AVS+CT, l = 25

CMA–ES, l = 25

Griewank Michalewicz

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 100  1000  10000  100000  1e+06

PSfrag replacements

A
ve

ra
ge

fi
tn

es
s

Number of evaluations

Sphere
Rosenbrock

Griewank
Normal, l = 5

Normal+AVS, l = 5
Normal+AVS+CT, l = 5

CMA–ES, l = 5
Normal, l = 25

Normal+AVS, l = 25
Normal+AVS+CT, l = 25

CMA–ES, l = 25

 0.01

 0.1

 1

 10

 100

 100  1000  10000 100000 1e+06

PSfrag replacements

A
ve

ra
ge

fi
tn

es
s

Number of evaluations

Sphere
Rosenbrock

Griewank
Normal, l = 5

Normal+AVS, l = 5
Normal+AVS+CT, l = 5

CMA–ES, l = 5
Normal, l = 25

Normal+AVS, l = 25
Normal+AVS+CT, l = 25

CMA–ES, l = 25

Rosenbrock Summation cancellation

 1e-10
 1e-08
 1e-06
 1e-04

 0.01
 1

 100
 10000

 100  1000  10000  100000  1e+06

PSfrag replacements

A
ve

ra
ge

fi
tn

es
s

Number of evaluations

Sphere
Rosenbrock

Griewank
Normal, l = 5

Normal+AVS, l = 5
Normal+AVS+CT, l = 5

CMA–ES, l = 5
Normal, l = 25

Normal+AVS, l = 25
Normal+AVS+CT, l = 25

CMA–ES, l = 25

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07

 100  1000  10000 100000 1e+06

PSfrag replacements

A
ve

ra
ge

fi
tn

es
s

Number of evaluations

Sphere
Rosenbrock

Griewank
Normal, l = 5

Normal+AVS, l = 5
Normal+AVS+CT, l = 5

CMA–ES, l = 5
Normal, l = 25

Normal+AVS, l = 25
Normal+AVS+CT, l = 25

CMA–ES, l = 25

PSfrag replacements

Average fitness
Number of evaluations

Sphere
Rosenbrock

Griewank

Normal, l = 5
Normal+AVS, l = 5

Normal+AVS+CT, l = 5
CMA–ES, l = 5
Normal, l = 25

Normal+AVS, l = 25
Normal+AVS+CT, l = 25

CMA–ES, l = 25

Fig. 7. Convergence behavior of various EDAs and of CMA–ES on all test problems.
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addition to the performance with respect to number of required evaluations,
the CMA–ES overall requires smaller population sizes as can be seen in Ta-
ble 3. The reason for this is that in the CMA-ES, the probability distribution
used to guide the search is not entirely rebuilt from scratch using only the data
in the current set of selected solutions. Instead, the distribution is weighted
over a path of generations past and hence represents an accumulation of infor-
mation. Overall it can be concluded that the novel EDA approach is at least
competitive with the CMA–ES.

5.3.3 Contribution of correlation trigger and of adaptive variance scaling

If the population size is at least as big as the population size that is required by
the EDA without adaptive variance scaling, the correlation–triggering scheme
indeed prevents the use of adaptive variance scaling as it detects that it is not
required to efficiently find the optimum. This behavior is depicted in Figure 8.
The results in Figure 7 and Table 3 however were selected on the basis of find-
ing the smallest population size for which the problem was solved. Because
the use of the correlation trigger allows for using smaller population sizes since
adaptive variance scaling will then be triggered, the results in terms of number
of evaluations required are still not as efficient as could be on simple functions
such as the sphere function. On the other hand, on such problems that the
EDA without adaptive variance scaling could already solve, the use of the
correlation trigger allows for a wider range of population sizes to be used be-
cause it switches adaptive variance scaling on or off as required (i.e. depending
on the size of the population). The added benefits of the correlation trigger
do not come at the cost of degrading performance for other, more involved
functions. The correlation trigger saves evaluations by forcing the variance
scaling coefficient to 1 whenever possible, but doesn’t fail to ensure adap-
tive variance scaling is used whenever required. For instance, on Rosenbrocks
function, adaptive variance scaling is always required. Indeed, in Figure 8 it
can be seen that the value for the variance scaling coefficient is most of the
time kept at a value larger than 1, even if the population size is increased
significantly. This conforms to the results in Table 3 where it can be seen that
the EDA without variance scaling fails even with this large population size
and hence, adaptive variance scaling is required. Overall we can conclude that
our proposed remedy to the signaled deficiencies of using merely the normal
distribution in an EDA significantly leverages the algorithm.

6 Summary and Outlook

In this article, we have analyzed the design of continuous EDAs starting from
the lessons learned from research into discrete EDAs. The major lesson learned
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Fig. 8. Typical behavior of the correlation–triggered adaptive–variance–scaling co-
efficient cAVS during a run on selected test problems using different population sizes.

that the inductive bias of the probabilistic model has to suit to the structure
of the optimization problem at hand is valid in any domain. Problem decom-
position allows to find efficient descriptions of the problem structure. In the
discrete domain, this automatically maps to detecting dependency relations
when estimating probability distributions as the basis of the inductive search
bias of the optimization algorithm. This understanding then maps to typical
GA concepts such as building blocks. In the continuous domain these concepts
have no direct equivalent. Hence, before transferring the lessons learned from
the discrete domain to the continuous domain, we must first generalize the
lessons learned before we specialize them again for the domain at hand. In
this article, we have made an important first step in this direction.

In continuous problems, the structure of a problem is characterized by the
contours of the function to be optimized. Since the contours can take any
shape and hence fitting the problem structure in the continuous case would
require the intractable property of universal approximation, it is much more
convenient to view problem structure as an arrangement of slopes and peaks
in the search space. These simpler substructures are much easier to take into
account and to build inductive search biases for.

Continuous EDAs rely on normal distributions. We have shown that the bias of
the normal distribution does not fit well to slopes due to lack of generalization
and as a consequence the EDA can get stuck. When searching around peaks,
the bias of the normal distribution suffices to find the optimum. We argue
that substructure identification is possible and beneficial in continuous EDA.
Substructure identification relates to analyzing the local structure of the cur-
rent search area so as to find out which shape dominates this search area. To
accomplish proper substructure identification, we use the ranked correlation
coefficient between the density of the approximated probability distribution
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and the fitness of the set of selected solutions. On slopes, we then scale the
variance of the EDA beyond its maximum–likelihood estimate. Experimen-
tal results on standard test problems indicate that the combination of these
techniques greatly improves the search efficiency of continuous EDAs.

Concluding, the concept of problem structure needs to be carefully analyzed
separately from its discrete counterpart when designing continuous EDAs. An
assessment is needed of how the induced bias of a continuous EDA suits the
characteristics of continuous optimization problems. Subsequently, techniques
need to be developed to overcome potential drawbacks of using approximated
density models that are unable to grasp in general the structure of the problem
at hand. Our work is a first step into this direction. In future work, we plan to
analyze in greater detail the possibilities to identify different substructures of
the search space on the fly and to consequently design novel continuous EDAs.
We believe that this is a promising area of research in continuous optimization
with Estimation–of–Distribution Algorithms.
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